Friday 28 October 2016

Introducing our new Telescope

Since we were awarded the second prize during the Launch Campaign in Santa Cruz, we were lucky enough to receive a telecope as a donation for our school's physics department.

Tonight, we took the opportunity of a school event to finally assemble and test it.


These are some impressions of our observations.

Cologne is quite a light-polluted city, so we weren't able to see too many stars. Nevertheless, we had a lot of fun observing the stars that were visible as well as some less celestial objects. The right photo shows a close-up of one of the towers of Cologne Cathedral, one of the region's most well-known landmarks.

Sunday 10 July 2016

CFP

We have just submitted the CFP, or "CanSat Final Paper", the last piece of documentation of our work at the CanSat-competition. This report is structured in a very similar way to a scientific project manuscript. Its purpose is the presentation and discussion of our scientific findings as well as the overall outcome of the project.

In the weeks to come, all CFPs will be published at ESA's website, we'll provide links as soon as possible.

At this moment in time, we are still in close contact to AATiS e.V. who provided the construction kit for our gas chromatograph. In the next months, they will publish two reports about our project as well as the modulation of their gas chromatograph and the measurement of humidity. We will keep you updated about the process.

Sunday 3 July 2016

Day 5 - Farewell and a Trip to Lisbon

Today was our very last day in Portugal. Given that there was no predefined schedule or obligations by the organisers of the competition and that our flight took off only in the late afternoon, we decided to spend this day in Lisbon, walking around the city and enjoying ourselves.


We finally had the opportunity of meeting and saying goodbye to some of the other teams who we would really like to meet again one time. Thanks a lot to all the awesome people we got to know during these five days of stress and thrills, but also of a lot of teamwork and fun!

Saturday 2 July 2016

Day 4 - Final Presentations and Award Ceremony

After a long night of gas chromatography and launch campaign analysis, the final presentations of each team's CanSat work and the results of their launches took place this morning and early afternoon. Having been randomly scheduled as the first team to present in front of all the other teams as well as the jury, we were firstly really nervous. After some minutes of error and data analysis, there were some comments from the jury, especially regarding our antenna and data transmission that had failed during the launch campaign for the first time since our German launch.

Although we were content with our own presentation, during the thirteen ones to come, we realised that each single team here had won their national competition for a reason. All missions were so advanced and carried out so precisely that they definetely impressed us a lot.

 

Some hours later, there was the prize giving and closing ceremoy. After several speeches, the winners of this year's European CanSat commpetition were finally announced:

3rd prize for the Irish team "Confey Can"
2nd prize for us, "URSinvestigators" from Germany!!
and 1st prize for Portugal's  "ENTA Team SAT 2"

We are really happy, thankful and proud, of course, to be ranked European "vice-champions"! We'd also like to congratulate the other teams whose joy we definetly share because we know that they all did a great job and really deserve their succes.


In the end, we would like to say THANK YOU:

On the one hand, to our sponsors and parters who supported us with material and advice that were essential for us to achieve build up our performance.

To ESA, the jury and the local organisers at the airfield of Santa Cruz who gave us the possibility of participating in this awesome competition and of gaining all the experience that we have collected so far.

On the other hand, to the great people we spent these days with. Enlisting them all would go beyond the scope here, but we are very thankful to have got to know them much more than for mere professional cooperation.

And, most importantly, to our supervising teachers Mr Servos and Mrs Censarek who not only helped us out whenever we needed them and gave us advice in any imaginable way, but also grew to be an inseperable part of our team as such. Special thanks also to Mrs Springer who stood in Portugal for Mrs Censarek who sadly could not be with us this week.

 

We are very thankful that during the last one and a half years, all of us had a great time that we possibly won't ever forget. Our sincere gratitude goes to everyone who was, in any way, part of this journey.

Friday 24 June 2016

Day 3 - The Launch Campaign

The day we had all awaited and worked towards had finally come. Having made the last preparations such as attaching the parachute to the satellite´s rods as well as tensely assembling our CanSat for the very last time, we were ready to leave for the launch. 




It seemed as if the weather conditions, namely a thick cloud cover at a low height as well as unfavorable  wind gusts, wanted to prevent our satellites´missions from being  carried out. The launch was delayed several times, which let our nervousness arise to an almost unbearable level. Nevertheless, we pretty much enjoyed spending time with the other teams whilst waiting.


Having passed the satellite´s last check, it turned out that we were to be the last team whose satellite would be launched with a rocket.


During the pre-launch, we already had to face the first problem as we were not able to properly align our antenna due to the steep descent to the rocket´s starting place, which we were able to solve by using a table increasing our antenna´s mobility.


The start signal sounded and we couldn’t help but watch the rocket disappear in the cloud cover, whilst detecting that we hardly received any data. We were not able to accurately track the satellite due to the missing mobility of our antenna as well as the impossibility to make out our CanSat´s position. During the landing, we finally received data again despite the long horizontal distance which allowed us to hand out it´s location measured be the GPS.


Since a successful recovery is crucial for our secondary mission, we were relieved when hearing that we were about to receive out satellite in the evening.


A long night including the analysis of any received data and the failure of our antenna as well as the gas chromatograhical analysis is ahead of us since the outcome of our mission is to be revealed in tomorrow´s final presentation.  

Thursday 23 June 2016

Day 2 - Test Flight and Initial Presentation

After the opening ceremony that took place this morning, we started to do the last preparations for our test flight. Before the test flight, each CanSat had to be completely mounted. There was also a safety briefing that made sure that everyone followed the most important directives, like the maximum height and diameter of the CanSat.


During the test flight itself, each team was expected to put up their ground support equipment in order to try and receive data from their CanSat. A so-called Flight Test Student Engineer was then flying in a sailplane and dropped the CanSat from a height of about 100m (the picture below shows ours as well as the UK's and Finland's Flight Test Student Engineer in front of the plane). Dependant on the outcome of this final test, each team got either a GO or a NO GO status. Those with a NO GO then had the opportunity of improving what went wrong and repeating the test.


Fortunately, we were able to receive our CanSat's data and could see very well that our parachute opened without any problems. The calculated descent rate was at 9.81 m/s which is perfectly following the directive of 8-11 m/s. The team that was responsible for the implementation of the test flights was as content as we were, so we got a GO at first attempt. Especially with last year's scenario of receiving no data at all at the back of our heads, this was very relieving.


In the afternoon, there was the initial jury presentation. Within five minutes, we had to present our team, mission, implementation, tests and everything else of importance. During the following five minutes of question and answer, especially our helix antenna and gas chromatograph attracted the jury's attention.

Tonight, we will be carrying out the very last preparations and finishing assembling our CanSat for the lauch that will take place tomorrow.

Wednesday 22 June 2016

Day 1 - Arriving at Santa Cruz

The adventure has begun!


Having been through a flight of three hours from Cologne to Lisbon as well as a one-hour bus ride, we finally arrived at our youth hostel in Santa Cruz, a small town 50km northern of Lisbon, at about five o'clock in the afternoon.

After check-in, we were glad to arrive at a very nice apartment that has a lot of space and thus enables us to work really efficiently and all simultaneously. There is currently some preparation work to do for our initial jury presentation as well as the test flight that will take place tomorrow.

The next step for us was the registration at the airfield where the launch as well as all of the presentations, pre- and post-flight work will take place.


We took dinner back at our hostel and had the opportunity of meeting some of the other teams, like the Finns, the Irish and the Poles. All of the others were really nice so that we are now looking forward not only to a lot of work to do but also to a great time together with great people.

Sunday 19 June 2016

Breakthrough of our Gas Chromatography

During the last few series of tests for our gas chromtography, our results were quite ambivalently satisfactory and dissatisfactory. On the one hand, there were clearly identifiable peaks that enabled us to recognise the connection between a large surface area for low air humiddity and a small surface area for high humidity. On the other hand, the modulation of our mobile phase (replacing air as the carrier gas by helium) made our base line appear less even. The better the baseline, the easier the following analysis of the peak. Consequently, most of our ambitions were ever since oriented towards a solution to this problem.

Firstly, we identified the cause of our problem itself. In order to plug our helium support into its aspiration port, we use urine bags. Their capacity as well as structure is overall perfectly suitable for our purpose. There is only one thing that we did not consider early on: The tube that we connect to the aspiration port includes a check valve. While this slows down the stream of helium which is good because of our limited supply in Portugal that is much smaller than the one in our huge gas bottle at school, it also makes the stream only a little inconsistent and therefore the baseline uneven.

We then considered possible solutions. While removing the check valve altogether would make our use of helium go beyond the scope of our local supply in Portugal, given also that there is most likely no change of purchasing a sufficient supply, and while replacing the carrier gas or storage again would not certainly lead to an improvement in performance, the only chance was for us to fool the mechanism.

We tried out threading a very tiny tube through the check valve with the idea of keeping the stream of helium constantly up, but at a very low volume-per-time rate. The following experiment delivered the best results that we had ever achieved. Measuring a much higher voltage than before, we were able to change the experiment's zoom view which made most unevennesses disappear. We then created several new series of tests that can now serve as a data basis in the time to come.

At this moment in time, we are finally really satisfied with our gas chromatography and are optimistic to have it work smoothly during our post-flight activities at Santa Cruz.

Thursday 16 June 2016

Presentation of our Gas Chromatograph

In terms of gaschromatographically analysing our air simples, we are currently preparing several series of tests tests after having finished building it (see previous post "Improving our Gas Chromatograph").  As we have never had a gas chromatograph at school before, students, teachers and especially chemistry classes are very interested in this part of our secondary mission. Thus, we took the opportunity of giving a short presentation and answering all the questions that they had.
 

Wednesday 15 June 2016

The final version of our Cansat's structural design is 3D printed!

Due to several printing errors as well as we measuring inaccuracies it was quite a long procedure to print our final mounting representing our structural design that is composed of 6 layers including 7 several parts that are stabalized by rods. The satellite´s CFK cover is to be cut to size as our sensors are placed at the border of the can which ensures realistic data measurements.The final structure enables us to directly reach several components. This has a far-reaching importance concerning the battery as an energy supply as well as our triggering mechanism that needs to be inspected at every juncture.

satellite, CFK case and parachute
 
printing the final layer of our CanSat
 
final structural design
 

Friday 10 June 2016

The Countdown has Begun

We are happy to be able to announce that the first part of our team - our antenna - is heading towards Portugal. We would like to thank "Molitor Speditions- und Handels- GmbH" for sponsoring the transport of this really important part of our ground support equipment.

 

Tuesday 7 June 2016

Improving our Gas Chromatograph

As mentioned before, we finished assembling and soldering our gas chromatograph some weeks ago so that it is now externally finished. Currently, we are testing and improving  it as well as adapting the mobile phase to our mission.

Gas chromatography uses the interaction of different chemical substances provoked by their chemical polarity or unpolarity. When a sample is injected, it meets two other substances. On the one hand, there is a inert or unreactive carrier gas, the mobile phase. The samples as well as the carrier gas stream through a column that contains the stationary phase, a microscopic layer of liquid or polymer on an inert solid support. Due to different intensities of the interaction of the individual substances of the sample and the stationary phase, these substances elute the column at a particular time for each compound. This retention time is characteristic of each substance so that  it is possible to investigate the composition of a sample as well as the quantity of the individual components based on this time.



Our own gas chromatograph is based on a self-construction kit made for educational purposes (e.g. chemistry classes at school) that suggests air as an inexpensive and easily accessible carrier gas. Obviously, this cannot work out for our mission of analysing an air sample. Consequently, we have replaced it by helium. Helium as an inert, unreactive and noble gas is usually the most commonly used carrier gas for gas chromatography. It is also very suitable for our particular analyse because air contains helium only as a trace gas with an amount of 0.000425% that is not that interesting for our particular investigation. Helium emerges at every radioactive alpha-decay. The tiny atom rises from the ground and as it is much more lightweight than the other components of the air, it can quickly escape the atmosphere and get into space. These circumstances make the gas quite irrelevant not only for our mission of investigating whether there is life "outside of earth", but also for someone observing the environment in the framework of climate change, air pollution and so on.

Having chosen helium as the carrier gas, we faced the challenge of adapting the gas chromatograph itself to the change of the mobile phase. While the stationary phase that is provided in the kit is unaffected of any modifications, the technical settings of the measuring device had to be adjusted. As the whole system is usually supposed to work with air, this constellation up to now has got the best performance in precision and error susceptibility. In the last time, we have experimented with different settings and are in close contact to the manufacturer of our self-construction kit so that we are now receiving pretty reliable chromatograms (although improvements are still to come). Using different equilibrium reactions involving calcium chloride, we prepared samples of different air humidity. When we measured the humidity with our sensor SHT15 and then compared it to our graphs, we were able to see a very clear tendency of a large surface area of the peak at low humidity and, the other way rund, a small surface area at high humidity. In the last few weeks before launch, we will expand this procedure and create more and broader series of tests in order to improve our experiment's scientific significance.

Thursday 2 June 2016

FDR and Team Interview

During the last time, we were busy drawing up, on the one hand, our Final Design Review (for a description of the CanSat design reviews, please see the previous post "Finishing our CDR") and, on the other, our team interview.

A "Meet the Team" section, including the team interview, can be found on ESA's website: http://www.esa.int/Education/CanSat/Meet_the_team_URSinvestigators

One question regarding the team's strenghts and weaknesses had to be answered in a video. Therefore, we created a YouTube channel (see https://www.youtube.com/channel/UCufdFMZZDnvg6qiVhIeaI0g). Besides the video that is there already, we plan to upload several videos on our test plan as well as triggering mechanism.

Monday 30 May 2016

Parachute

Today, we met and completed our parachute. After having finished sewing, we decided to add to the central hole several small ones. They are arranged circular around the central hole as this model of a round canopy parachute appears to have the best flight stability.

As there is no drag coefficent for parachutes of this design a calculation of the exact size of the parachute and the holes was not possible. Therefore, we developed a testing concept for measuring the air resistance with an air velocoty of 11 m/s.



Within the test, we drove with a convertible. We arranged an anemometer next to our parachute that was attached to a dynanometer, The latter one running with the CassyLab software. In the beginning our parachute had holes which surely would be too small. Within the test, we enlarged them until the air resistance was as big as needed.

The test was very succesful. This is what our parachute finally looks like:



Sunday 29 May 2016

Successful Project Day

Today we met in order to successfully complete several aspects of our misssion.

Triggering Mechanism
Our final triggering mechanism is composed of a servo motor whose rotation is converted into a linear vertical movement of the Vacuette, which is guided through a mounting. This conveyance is ensured by a fixed split pin. The interaction can be compared to the mechanism of an engine relating to the mechanism of a crankshaft and a connecting rod. The Vacuette is then to be broached by the cannula. In order to seal the Vacuette, the servomotor rotates in the counter direction. To ensure the stability of the system, the cannula is fixed in both vertical directions. A sufficient force exerted by the servomotor is necessary as the membrane is quite hard to be pushed through. This is what we were about to test today. It is proven that the exerted  force is enough. The vacuette moved 0.53 cm what it satisfying as this is a distance we can work with very well. Nevertheless, we modified the servomotor so that it is able to turn 360 degrees and can cover a distance of about 1 cm, even though the opening angle it is not aligned perfectly in the direction of movement. 


Structural Design
Due to the realization of our final triggering mehanism, we were able to completely finish the 3D-mounting of our CanSat. It is going to be printed tomorrow. Aftwerwards, the several components are to be fitted into the can. In case they cannot be perfectly placed into the mounting due to measuring inaccuracies, the 3D model is to be modified.
Video Editing- Team Interview
 The video for our team interview can be found on our youtube channel: https://www.youtube.com/watch?v=Yn8shQxSHdA



Saturday 21 May 2016

team interview, structural design, triggering mechanism

Currently, we are preparing our team interview which will be published on ESA's website in the following weeks. Therefore, we met today and developed a script for the video. We we are going to record it in our project room in the course of the next week.

Generating our CanSat's structural design has been quite productive. We established a CAD-model employing SolidWorks.

Furthermore, we finished the design of our triggering mechanism by finally perfectioning a mecanism in order to effectively transmit the servomotor´s power and convert the rotation into vertical movement. An interaction of fixed split pins can be compared to the mechanism of a crankshaft and connection rods. Consequently, the preproduction model has been optimized. We are going to inform you on the final machanism soon.


preproduction model
sketch of triggering mechanism

Wednesday 11 May 2016

gas chromatograph and data transmission

Today, there was no school for all of us due to oral exams for the graduating students. Therefore, we decided to meet in school and work on our CanSat.

Firstly, we finished the construction of our gas chromatograph which will be used for analyzing the air samples taken by our CanSat. We have ordered a construction kit and already built some parts of the whole arrangement just as the measuring device within the last few weeks.



At the start, we finished assembling and soldering the measuring board:


After we had put together the whole arrangement of the gas chromatograph, we were able to test the program in addition.


The received results are satisfying and showed the functionality of our gas chromatograph (the gas chromatograph's functionality). We will continue to test and to adjust it to our specific requirements in the following weeks.


During the day, we also tested the data transmission between our CanSat and the antenna. We specially focused on checking if the newly bought transmitter and receiver modules work smoothly. Therefore, we created a test program and applied it to a test concerning a distance of 200m.


Finally, we redeveloped our first ideas of our can's interior design.

Friday 29 April 2016

Finishing our CDR


During the last time, we were quite stressed out working on our CDR, a report that has to be sent to ESA by Sunday, 1 May.
 
To give those of you who aren't familiar with the various procedures during the CanSat-competition a little insight, here comes an overview on the reports that each individual team has to deliver. 

Before the Launch Campaign, there are two reports: the CDR (Critical Design Review) and the FDR (Final Design Review). Both of them include the actual Progress Report as well a Design Document.

In the Progress Report, the team has to deliver a short Progress Statement about how things are going on that will later be published on ESA's website. In addition to this, there is a rather detailed Project Status, explaining problems, plans and current tasks about their mission's individual components as well as a Task List.

The Design Document includes specific descriptions and explanation about each task that has to be fulfilled. There is a Team Introduction explaining the team's structure and goals,  a CanSat Description including for example the mechanical, electrical and software design, a Project Plannig section stating for example a time schedule as well as a test plan and, finally, the Outreach Programme.

In addition to the text, there can be pictures, logos, short videos etc.

Given that these reports are an important part of the jury's basis for evaluation, we spent multiple hours writing the individual texts, searching for pictures and coordinating our teamwork. Up to now, we have managed to set up a preliminary result. During the two days to come, it will be revised and corrected before sending it to ESA .

Wednesday 13 April 2016

Improving our triggering mechanism

During the last few weeks, we've made some progress concerning our triggering mechanism. We perfected our idea of a mechanism with a servomotor and created a preproduction model. 

Therefore, our current triggering mechanism is composed of a servomotor whose rotation is converted into a linear vertical movement of the vacuette, which is guided through a mounting. It is then to be broached by the cannula. In order to seal the vacuette, the servomotor rotates in the counter direction. To ensure the stability of the system, the cannula is fixed in both vertical directions. A sufficient force exerted by the servomotor is necessary as the membrane is quite hard to be punctured (as described in the previous post). The following graphic shows the development of our triggering mechanisms:






The preproduction model that is currently being finished is necessary to prove whether this mechanism is the most suitable and has got the least potential difficulties. It allows us to pre-identify problematic areas and to improve whatever does not work perfectly. In addition to that, it is a great display item and can be used within the framework of our outreach programme for exhibitions as well as for concrete explanations during the presentations of the Launch Campaign. 

As soon as possible, we will test our triggering mechanism using the preproduction model. We are confident that this (or a slightly modified procedure) will be our final triggering mechanism and we hope that the tests will be as successful as we expect.




Thursday 31 March 2016

Progress!

This month, we met multiple times in order to work on our project, including two meetings during our holidays this week that very quite efficient.

Our present challenges are choosing and implementing a proper procedure for taking our air samples, getting an overview of all components that have to fit in our CanSat and also preparing the CDR report that has to document our mission, procedure and progress to ESA.

We split up tasks so that while parts of the team wrote the report or constructed the CanSat's components with a 3D-modeling software called SolidWorks, others developed multiple ways of implementation of a proper triggering mechanism of the air samples.

The air samples will be taken with vacuettes, very solid plastic containers that are pre-evacuated and that have got a membrane that closes very tightly after it is punctured. Given that this membrane is very thick and tough (see photo below), it is quite difficult to do so.


On the one hand, it is almost impossible to puncture the material with rather thick needles or similar equipment, so given that vacuettes are made to work with cannulas, we choose to also work with cannula needles.


On the other hand, very great strength is needed to do the punctation. Up to now, we have discarded the procedure with a rotating panel that was mentioned in a previous post as well as another that would have been solenoid-run because they don't provide enough strength to punctate the vacuette as well as secure the air samples. We currently think of a servomotor-run mechanism. Being provided 9V only, the servomotor (see below) is much stronger than e.g. solenoids.


We are hopeful and optimistic that this procedure will work out, so in the next time, we'll prepare an experimental setup including a vacuette, cannula and servomotor in order to test the mechaism and its strength. And of course, we'll always keep you updated!

Tuesday 23 February 2016

Rosetta-Webconference at DLR's

Today, we visited the DLR (Deutsches Luft- und Raumfahrtzentrum) in Cologne in order to participate in an international webconference about the Rosetta / Philae mission.

After having arrived at about 10am, we were welcomed by the organisators and could get comfortable. We were glad to have the unique opportunity of taking a look at models and the team's project room.


During the webconference itself, there were three project leaders who gave presentations about different aspects of the mission. The audience consisted of ten student groups from all over the world that were connected via webcams and a live-chat. There were groups from Italy, Poland, Germany, Australia, Sudan, Austria and Egypt. As we were able to participate live at the DLR, we sat behind the project leaders. After the introductary presentations, we were all free to ask questions.

To conclude, we can definetly say that we had a great time today and learned a lot about the Rosetta  / Pilae mission. It was even more interesting considering the fact that parts our our CanSat-mission were directly inspired by this one.

We would really like to thank the DLR, espacially Mr Zywicki, for offering us the great opportunity to participate in this conference.


If you wish to get some information on the mission, we recommend the following websites:

http://blogs.esa.int/rosetta/   (a blog by the European Space Agency about the mission)
http://www.esa.int/Our_Activities/Space_Science/Rosetta   (information about the mission - official ESA website)
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10394/   (information about the mission  - official DLR website)  

Monday 8 February 2016

Interview at WDR - Update

The interview will be published tomorrow: Tuesday, 9th February between 3.05 and, 5 pm (WDR,  "Leonardo"). It is available on the internet:

Friday 5 February 2016

Interview at WDR

Today, we visited the WDR studios in Cologne. We had been invited to an interview about our CanSat work by a team member of the science programme "Leonardo" (radio station WDR5).

It was real fun talking about our time during the preparations for the 2015 competition as well as about the Launch Campaign in Bremen.



Later on, we went to the Cologne city centre in order to find sponsors. - If you are interested in supporting our mission, or know someone who might be, we would be really happy if you contacted us.

Saturday 30 January 2016

Portugal!

We promised you to always keep you updated about information concerning the location of the 2016 Launch Campaign.
Finally, we are able to do so:

The Launch Campain will take place in Portugal from 22 to 26 June 2016, as ESA recently announced.

Our whole team is very excited and looking forward to a hopefully great experience!

Wednesday 13 January 2016

Improving our air samples and triggering mechanism

At the moment, we are working on improvements to our air samples and triggering mechanism.

Up to now, our triggering mechanism contains tiny pins, loops and much precision work shortly before the Launch Campaign. Working on it during the 2015 competition under pressure of time was really stressful. The new mechanism will work with a rotating panel and strings. We'll keep you up to date how exactly it will work when we've figured out how we're going to proceed.

As mentioned in the previous post, we're going to use vacuettes to collect the air samples.

To make them fit into our CanSat, we're gonna have to restructure it. In addition to that, we are at the moment planning to exchange some of the CanSat's components that didn't work properly last year or will be unnecessary during this year's competition.

We're also planning the exact produre of collecting the air samples. For example, the vacuettes have to be tested, placed in the can properly and brought together with the triggering mechanism. You see: there's lots of work  to be done.